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Abstract
We introduce the nonlinear SU(3) charged and hypercharged bosonic coherent
state in three-mode Fock space. It can be further recast into a compact
exponential form. The fermionic case is also discussed.

PACS numbers: 03.65.-w, 42.50.Ar

1. Introduction

Since the pioneering work of Glauber [1] and Klauder [2], the coherent state (CS) |α〉 has been
widely used in many fields of physics. The photon CS state, defined as the eigenket of the Bose
annihilation operator a|α〉 = α|α〉, describes quantum mechanically the state of a laser. Many
generalized CS, such as the angular moment CS [3], conserved-charged CS [4] and fermionic
CS [5], have been established. Another non-Abelian CS, the so-called SU(3) conserved-
charged and hypercharged CS [6], can be constructed in three-mode Fock space [6–8], because
a three-mode isotropic harmonic oscillator possesses a SU(3) symmetry [9]. In other words,
one can represent SU(3) group generators by the three-dimensional harmonic oscillator [10].
The harmonic oscillator representation of the SU(3) generators is [11]

Si = a†λia (i = 1, 2, . . . , 8) (1)

with a† and a defined as

a =
(

a1

a2

a3

)
a† = ( a

†
1 a

†
2 a

†
3 ) .

λi is the Gell-Mann matrix satisfying

[λi, λj ] = 2if ijkλk (2)
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where f ijk are the group structure constants. The explicit forms of Si are

S1 = a
†
1a2 + a

†
2a1, S2 = −ia†

1a2 + ia†
2a1

S3 = a
†
1a1 − a

†
2a2 S4 = a

†
1a3 + a

†
3a1

S5 = −ia†
1a3 + a

†
3a1 S6 = a

†
2a3 + a

†
3a2

S7 = −ia†
2a3 + a

†
3a2 S8 = 1√

3
(a

†
1a1 + a

†
2a2 − 2a†

3a3)

with [ai, a
†
j ] = δij . The representations of charge operator Q and hypercharge operator Y are

given by

Q = 1
3 (2a

†
1a1 − a

†
2a2 − a

†
3a3) (3)

Y = 1√
3
S8. (4)

Due to the fact that Q and Y commute with the product of three modes of annihilation operators

[Q, a1a2a3] = 0 [Y, a1a2a3] = 0 [Q,Y ] = 0 (5)

there must exist their common eigenvector, denoted by |z, y, q〉, which satisfies

Q|z, y, q〉 = q|z, y, q〉 (6)

Y |z, y, q〉 = y|z, y, q〉 (7)

a1a2a3|z, y, q〉 = z|z, y, q〉. (8)

In [6] the explicit form of |z, y, q〉 is obtained:

|z, y, q〉 = Nqy

∞∑
l=0

zl

[l!(l + y + q)!(l + 2y − q)!]1/2
|l + y + q, l + 2y − q, l〉 (9)

where |l + y + q, l + 2y − q, l〉 is a three-mode Fock state, and Nqy is the normalization factor:

Nqy =
[ ∞∑

l=0

(|z|2)l
l!(l + y + q)!(l + 2y − q)!

]−1/2

. (10)

Another approach to obtaining |z, y, q〉 (up to a constant factor) is by starting from the usual
three-mode CS |α, β, γ 〉:

|α, β, γ 〉 = exp(αa
†
1 + βa

†
2 + γ a

†
3)|000〉 (11)

then letting

α = λ1 exp[i(θ + 2φ + ϕ)] β = λ2 exp[i(θ − φ + ϕ)]

γ = λ3 exp[i(θ − φ − 2ϕ)]
(12)

and by considering a suitable average over two U(1) phases according to the following
expression:

1

4π2

∫ 2π

0
dφ
∫ 2π

0
dϕ exp(−i3qφ) exp(−i3yϕ)|α, β, γ 〉

= e3iyθλ
y+q

1 λ
2y−q

2

∑
l

zl

[l!(l + y + q)!(l + 2y − q)!]
1
2

×|l + y + q, l + 2y − q, l〉 = |z, y, q〉 (13)

where we have demanded 3q and 3y being integers, and

z = λ1λ2λ3 exp(−iθ). (14)
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Once we introduce ‘charge’ and ‘hypercharge’ by defining three types of quanta (a1,a2,a3)

possessing fractional ‘charge’ 2
3 , − 1

3 , − 1
3 and ‘hypercharge’ 1

3 , 1
3 , − 2

3 , which corresponds to
the SU(3) quark model in elementary particle physics [11], we can call |z, y, q〉 the SU(3)
charged and hypercharged CS. For example, if a particle carries charge q = 1, supercharge
y = 1, then from (9) we have the corresponding SU(3) charged and hypercharged CS:

|z, 1, 1〉 = N11

∞∑
l=0

zl

[l!(l + 1)!(l + 2)!]
1
2

|l + 2, l + 1, l〉

which states that the quark content of this particle is uud (two u quarks and one d quark). By
considering that quarks are actually fermions, the SU(3) charged and hypercharged fermionic
CS is also constructed in [6].

Recently, another route to generalizing the concept of CS leads to the so-called nonlinear
coherent state (NLCS) [12–17]. One special NLCS could be generated as the stationary state
of the centre-of-mass motion of a laser-driven trapped ion far from the Lamb–Dicke limit [13].
The NLCS is defined as

f (N)a|f, α〉 = α|f, α〉 (15)

where f (N) is an operator-valued function of the number operator N = a†a. Another kind
of NLCS is defined to satisfy the following eigenvalue equation:

f (N)an|α, f 〉 = α|α, f 〉. (16)

For example, one can prove that the single-mode squeezed vacuum state and squeezed one-
photon state satisfy equation (16):

1

N + 1
a2S(z)|0〉 = αS(z)|0〉 (17)

1

N + 1
a2S(z)|1〉 = αS(z)|1〉 (18)

where S(z) is the one-mode squeezing operator:

S(z) = exp

(
z

2
a2 − z∗

2
a†2

)
z = reiθ α = eiθ tanh r. (19)

A question thus naturally arises: how to construct a nonlinear SU(3) charged and
hypercharged coherent state (NLSUCHCS)? In section 2 we construct bosonic NLSUCHCS,
which can be further put in a compact exponential form. In section 3 we extend the bosonic
NLSUCHCS to the fermionic case, because the quark is a fermion.

2. SU (3) nonlinear charged and hypercharged coherent state—bosonic case

By analogy with the single-mode NLCS, we define the NLSUCHCS |z, y, q〉f as the common
eigenvector of the following three operators:

f (N1, N2, N3)a1a2a3|z, y, q〉f = z|z, y, q〉f Ni = a
†
i ai (20)

Q|z, y, q〉f = q|z, y, q〉f (21)

Y |z, y, q〉f = y|z, y, q〉f (22)

since

[f (N1, N2, N3)a1a2a3,Q] = 0 [f (N1, N2, N3)a1a2a3, Y ] = 0.
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Here the annihilator of three modes multiplied by f (N1, N2, N3) means that the annihilating
process is field intensity dependent. Expanding |z, y, q〉f in the Fock basis

|z, y, q〉f =
∞∑

m,n,l=0

Cmnl|mnl〉 (23)

where |mnl〉 is the three-mode number state:

|mnl〉 = a
†m
1 a

†n
2 a

†l
3√

m!n!l!
|000〉

and then acting Q and Y on |z, y, q〉f , as a result of (21) and (22) we see that

n − l = 2y − q m − l = y + q. (24)

Next, operating f (N1, N2, N3)a1a2a3 on equation (23), we get the recursive relation

Cm,n,l = z

f (m − 1, n − 1, l − 1)
√

mnl
Cm−1,n−1,l−1

= zl

√
(m − l)!(n − l)!

m!n!l!

l∏
k=1

1

f (m − k, n − k, l − k)
Cm−l,n−l,0 (25)

where, without loss of generality, we have assumed m � l, n � l. Thus |z, y, q〉f is expressed
as

|z, y, q〉f = C0

∞∑
l=0

(za
†
1a

†
2a

†
3)

l(m − l)!(n − l)!

m!n!l!

×
l∏

k=1

1

f (m − k, n − k, l − k)
|m − l, n − l, 0〉 (26)

where C0 ≡ Cm−l,n−l,0 is the normalization constant. It is desirable to put NLSUCHCS into
a neat exponential form, so from (26) we have

|z, y, q〉f = C0

∞∑
l=0

(za
†
1a

†
2a

†
3)

l

[(m − l + 1) · · ·m][(n − l + 1) · · · n]l!

×
l∏

k=1

1

f (m − k, n − k, l − k)
|m − l, n − l, 0〉 (27)

where

1

[(m − l + 1) · · ·m][(n − l + 1) · · · n]

×
l∏

k′=1

1

f (N1 + l − k′, N2 + l − k′, N3 + l − k′)
|m − l, n − l, 0〉

=
l∏

k=1

1

(m − l + k)(n − l + k)f (N1 − 1 + k,N2 − 1 + k,N3 − 1 + k)

×|m − l, n − l, 0〉

=
l∏

k=1

1

(N1 + k)(N2 + k)f (N1 − 1 + k,N2 − 1 + k,N3 − 1 + k)

×|m − l, n − l, 0〉. (28)
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Substituting (28) into (27) and using the operator identity

(a
†
1a

†
2a

†
3)

l
l∏

k=1

f (N1 + k,N2 + k,N3 + k) = [f (N1, N2, N3)a
†
1a

†
2a

†
3]l (29)

we see that the state (26) can be written as the following compact exponential form:

|z, y, q〉f = C0

∞∑
l=0

zl

l!

[
1

N1N2f (N1 − 1, N2 − 1, N3 − 1)
a

†
1a

†
2a

†
3

]l

|y + q, 2y − q, 0〉. (30)

One can confirm this result by noticing

af (N) = f (N + 1)a a†f (N) = f (N − 1)a† (31)[
f (N1, N2, N3)a1a2a3,

1

N1N2f (N1 − 1, N2 − 1, N3 − 1)
a

†
1a

†
2a

†
3

]
= 1 (32)

so equation (20) is checked. The exponential form (30) is also convenient for us to check (21).
Due to

[Q, a
†
1a

†
2a

†
3] = 0 [Y, a

†
1a

†
2a

†
3] = 0

so

Q|z, y, q〉f = C0 exp

[
z

N1N2f (N1 − 1, N2 − 1, N3 − 1)
a

†
1a

†
2a

†
3

]
×Q|y + q, 2y − q, 0〉 = q|z, y, q〉f .

In particular, when f (N1, N2, N3) is set to 1, then |z, y, q〉f reduces to the ordinary |z, y, q〉:

|z, y, q〉 = C0 exp

[
z

N1N2
a

†
1a

†
2a

†
3

]
|y + q, 2y − q, 0〉. (33)

In fact, by operating a3 on |z, y, q〉 we have

a3|z, y, q〉 = C0

[
a3, exp

[
z

N1N2
a

†
1a

†
2a

†
3

]]
|y + q, 2y − q, 0〉 = z

N1N2
a

†
1a

†
2 |z, y, q〉.

Then using a1a2
1

N1N2
a

†
1a

†
2 = 1, we see a1a2a3|z, y, q〉 = z|z, y, q〉. For another case, when

f (N1, N2, N3) = 1√
(N1 + 1)(N2 + 1)(N3 + 1)

then |z, y, q〉f becomes

|z, y, q〉f = C0 exp

[
z
√

N3√
N1N2

a
†
1a

†
2a

†
3

]
|y + q, 2y − q, 0〉. (34)

Recall that the Susskind–Glogower phase operator is defined as 1√
(Ni+1)

ai , i = 1, 2, 3, so
equation (34) is the eigenvector of the three-mode Susskind–Glogower phase operator.

The NLCS can be generalized to the m-mode case. Its exponential form is

|z, {G}〉 = exp

[
z

N1...Nm−1f (N1 − 1, . . . , Nm − 1)
a

†
1 . . . a†

m

]
| . . . , 0〉 (35)

where {G} denotes the set of other good quantum numbers, which are eigenvalues of some
independent operators commuting with f (N1, N2, . . . , Nm)a1a2 . . . am, | . . . , 0〉, which is an
m-mode Fock state with the mth mode being vacant. |z, {G}〉 obeys the eigenvector equation:

f (N1, N2, . . . , Nm)a1a2 . . . am|z, {G}〉 = z|z, {G}〉. (36)
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3. SU (3) nonlinear charged, hypercharged coherent state—fermionic case

The above discussion can be extended to the fermionic case. Introducing the following
generators:

Gi = b†λib (37)

where b† and b denote

b =
(

b1

b2

b3

)
b† = ( b

†
1 b

†
2 b

†
3 )

and bα are Fermi operators satisfying the anticommutative relation

{bα, b
†
β} = δαβ α, β = 1, 2, 3. (38)

With use of the operator identity

[A,BC] = {A,B}C − B{A,C} (39)

it is easy to verify

[Gi,Gj ] = 2if ijkGk. (40)

Similar to equations (3) and (4), we introduce the fermionic NLSUCHCS:

Q′ = 1

2
G3 +

1

2
√

3
G8 = 1

3
(2b†

1b1 − b
†
2b2 − b

†
3b3) (41)

Y ′ = 1√
3
G8 = 1

3
(b

†
1b1 + b

†
2b2 − 2b†

3b3) (42)

which satisfy

[Q′, b1b2b3] = 0 [Y ′, b1b2b3] = 0 [Q′, Y ′] = 0. (43)

Let Nαb = b†
αbα . By analogy with (20)–(22), we can construct the common eigenvector of

Q′, Y ′, and f (N1b, N2b, N3b)b1b2b3, which is denoted by

Q′|ξ, y, q〉f = q|ξ, y, q〉f Y ′|ξ, y, q〉f = y|ξ, y, q〉f (44)

f (N1b, N2b, N3b)b1b2b3|ξ, y, q〉f = ξ |ξ, y, q〉f . (45)

Since

[f (N1b, N2b, N3b)b1b2b3]2|ξ, y, q〉f = −ξ 2|ξ, y, q〉f = 0

ξ must be a Grassmann number with property ξ 2 = 0. The Grassmann number anticommutes
with a single Fermi operator. We can derive the explicit form of |ξ, y, q〉f by expanding it in
Fock basis:

|ξ, y, q〉f =
∑
n,m,l

|m, n, l〉Cmnl =
∑
n,m,l

bm
1 bn

2b
l
3|0, 0, 0〉Cmnl m, n, l = 0, 1.

Substituting it into the eigenvector equation (45) we find that

ξC000 = −f (0, 0, 0)C111

ξCmnl = 0 m · n · l �= 0.

Then, by taking into account (44) we obtain

qC100 = 2
3C100 qC011 = − 2

3C011 qC110 = 1
3C110 qC101 = 1

3C101

qC010 = − 1
3C010 qC001 = − 1

3C001 qC000 = 0 qC111 = 0.

yC110 = 2
3C110 yC001 = − 2

3C001 yC010 = 1
3C010 yC100 = 1

3C100

yC011 = − 1
3C011 yC101 = − 1

3C101 yC000 = 0 yC111 = 0.
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Hence |ξ, y, q〉f is

|ξ, 1
3 ,

2
3 〉 = ξ |1, 0, 0〉 |ξ,− 1

3 ,− 2
3 〉 = ξ |0, 1, 1〉

|ξ, 2
3 ,

1
3 〉 = ξ |1, 1, 0〉 |ξ,− 2

3 ,− 1
3 〉 = ξ |0, 0, 1〉

|ξ,− 1
3 ,

1
3 〉 = ξ |1, 0, 1〉 |ξ, 1

3 ,− 1
3 〉 = ξ |0, 1, 0〉

|ξ, 0, 0〉 = ξ |0, 0, 0〉 |ξ, 0, 0〉 = f (0, 0, 0)|0, 0, 0〉 + ξ |1, 1, 1〉
(46)

or written in an exponential form which is similar in form to (30)

|ξ, y, q〉f = exp

[
ξ

N1bN2bf (1 − N1b, 1 − N2b, 1 − N3b)
b

†
1b

†
2b

†
3

]
|y + q, 2y − q, 0〉. (47)

This can be checked by using

bNb = (1 − Nb)b b†Nb = (1 − Nb)b
† Nb† = b†(1 − Nb) (48)

and[
f (N1b, N2b, N3b)b1b2b3,

ξ

N1bN2bf (1 − N1b, 1 − N2b, 1 − N3b)
b

†
1b

†
2b

†
3

]
= ξ. (49)

Recall that in [18] the CS formalism is set up for presenting quark and gluon cross sections.
We wish some experimental consequence can be calculated on the basis of such nonlinear
SU(3) charged and hypercharged coherent states.

Acknowledgment

This work was supported by the Foundation of Educational Ministry of China.

References

[1] Glauber R 1963 Phys. Rev. 131 2766
[2] Klauder J R and Skagerstam B-S 1985 Coherent States (Singapore: World Scientific)
[3] Radcliffe J M 1971 J. Phys. A: Math. Gen. 4 313
[4] Bhaumik D, Bhaumik K and Dutta-Roy B 1976 J. Phys. A: Math. Gen. 9 1507
[5] Ohnuki Y and Kashiwa T 1978 Prog. Theor. Phys. 60 548
[6] Fan H Y and Ruan T N 1983 Commun. Theor. Phys. 2 1405
[7] Fan H Y, Zou H and Wei H 1998 Commun. Theor. Phys. 29 105
[8] Fan H Y and Klauder J R 1994 Mod. Phys. Lett. A 9 1291
[9] Davydov A S 1976 Quantum Mechanics 2nd edn (Oxford: Pergamon)

[10] Schiff L I 1968 Quantum Mechanics (New York: McGraw-Hill)
[11] Gell-Man M and Ne’eman Y 1964 The Eightfold Way (New York: Benjamin)
[12] de Matos Filho R L and Vogel W 1996 Phys. Rev. A 54 4560
[13] Man’ko V I, Marmo G, Zaccaria F and Sudarshan E C G 1996 Proc. 4th Wigner Symp. ed N Atakishiyev et al

(Singapore: World Scientific)
[14] Sivakumar S 2000 J. Phys. A: Math. Gen. 33 2289 and references therein
[15] Agarwal G S and Tara K 1991 Phys. Rev. A 43 492
[16] Liu N L, Sun Z H and Fan H Y 2000 J. Phys. A: Math. Gen. 33 1933
[17] Roy B 1998 Phys. Lett. A 249 25
[18] Curci G, Greco M and Srivastava Y 1979 Phys. Rev. Lett. 43 834


